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INTRODUCTION 

Design of safe and survivable structures requires the 
availability of guaranteed minimum strength thresholds 
for structural materials to enable a meaningful 

' comparison of strength requirement and available 
strength. This paper develops a procedure for 
determining such a threshold with a desired degree of 
confidence, for structural materials with none or 
minimal industrial experience. The problem arose in 
attempting to use a new, highly weight-efficient 
structural load tendon material to achieve a lightweight 
super-pressure balloon. The ' developed procedure 
applies to lineal (one dimensional) structural elements. 
One important aspect of the formulation is that it 
extrapolates to expected probability distributions for 
long length specimen samples from some hypothesized 
probability distribution that has been obtained from a 
shorter length specimen sample. The use of the 
developed procedure is illustrated using both real and 
simulated data. 
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The designer of a structure and the structural analyst 
aim to ensure that structures survive deployment and 
worst-case service life, and do not pose hazard during 
consequent decommissioning, disassembly, and final 
disposal. Additionally, in cases where extreme event 
failure must be anticipated, both the designer and the 
analyst must assure that the structure or system of 
interest fails in a safe fashion. These goals require the 
analyst to bound future events to perceived safe 
performance of the structure. Typically, these goals are 
achieved by assessing worst-case scenarios and by 
conservatively considering ageing of the structure. The 
qualification process typically entails the comparison of 
analytically obtained performance quantities to some 
thresholds. Uncertainty, on either of these requires the 
use of some form of factors of safety. The performance 
comparison is only as good as the analytic predictions 
of the performance quantities and the quality of the 
thresholds. The analytical predictions generally rely on 
the mechanical properties of the structural materials. 

Reliance on strength thresholds for structural 
components or for structural materials is only warranted 

with some confidence level. Such thresholds exist for 
traditional structural materials with a long history of 
successful industrial applications. Quality controls, 
instituted by manufacturers and safeguarded by 
standards promulgated by industry wide umbrella 
organizations, provide assurance that these thresholds 

when such strength thresholds are guaranteed minima . .  
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are indeed met and can be relied on. Nevertheless, the 
last three decades saw an ever more rapid introduction 
of new industrial materials with scant mechanical 
characterization and limited understanding of 
performance. Despite promising mechanical properties 
that suggest structural and economic efficiency many 
such materials usually experience a long route before 
being used in structural systems where failure has 
serious consequences. The early use of these new 
materials in not-so critical applications builds 
confidence. It allows industry and academia to collect 
information that eventually leads to an adequate 
understanding of the material, which is necessary for 
critical applications. In this paper we present a 
procedure for determining a minimum threshold with a 
desired degree of confidence for structural materials 
with none or minimal industrial experience. 

balloon system fails. Allowing only one balloon in a 
fleet of 100 balloons to fail corresponds to determining 
a minimum strength threshold for 15,000,000 feet long 
load, tendon with a high degree of confidence. 
Typically, the specimen length for initial strength 
characterization was 6 feet. That is, the length for 
which a minimum strength threshold is to be guaranteed 
with some acceptable confidence is 2,500,000 times the 
length of the test specimen. 

A guaranteed minimum strength threshold is vital to the 
successful deployment and survival of the super- 
pressure balloon. We next look at the process of 
determining guaranteed minimum strength thresholds 
from test data. 

MINIMUM STRENGTH THRESHOLDS 

BACKGROUND 

The design, service-life qualification, and reliability 
predictions for current stratospheric balloons are based 
on merit-type assessments. Generally, these 
assessments do not compare realistic local stress 
projections to material performance parameters. Large 
safety factors are typically used to compare strength 
and service state indexes. This practice obscures the 
actual strength margin variation and is a hindrance to 
the design of weight-efficient structures. Analytical 
approaches that allow accurate predictions of stress 
resultants in the structural elements of the pneumatic 
envelope have been developed over the last fifteen 
years.’’ However, until recently they had little 
influence on the design of balloons. With the 
development of the pumpkin shape super-pressure 
balloon and particularly with the use of a statically 
determinate design concept, accurate predictions for the 
stress resultants for the design defining states are 
available and safety factors more in line with the 
aerospace industry become applicable. 

The lightweight superpressure balloon design for ultra 
long duration balloons (ULDB) uses load tendons made 
of a new, highly weight-efficient structural material, 
braided PBO cord. Mechanical strength 
characterization and industrial experience for this 
material has so far been inadequate for developing 
reliable strength thresholds for these load tendons. 
Extensive tensile strength testing of the cords and 
suitable evaluation of the test results is r eq~ i red .~  

The present super-pressure ULDB design has about 300 
load tendons with each load tendon about 500 feet long. 
The load tendons are statically determinate. There is no 
redundancy. Therefore, if any of the tendons fail, the 

The determination of ultimate tensile strength 
characteristics of a material involves testing of 
specimens to failure. The entire population cannot be 
tested, as no material would be left for the technological 
purpose of interest. Typically, the high cost of the 
testing as well as of the material requires statistical 
strength characteristics to be estimated from a very 
small number of specimens. Statistical strength 
characteristics are determined by constructing from the 
sample an estimating function for the probability 
characteristics of the population. 

It is often sufficient to use an “off-the-shelf’ 
distribution to match the histogram of the available test 
data over the regime where data is available. 
Probability distributions typically used in 
characterization of strength in structural materials are 
the Gaussian distribution and the Weibull distribution. 
The Gaussian distribution is symmetrical, while the 
Weibull distribution is non-symmetrical. Tail ends of 
the Gaussian distribution extend to infinity, while the 
three-parameter Weibull has a finite left tail and infinite 
right tail. Generally, the probability density functions 
are chosen to match the data in the “cluster region” 
well, for which either the Gaussian or the Weibull 
distribution may serve adequately. But if the 
technology- query^ concerns the probability 
characteristics of the tails, such a characterization with 
either of these popular probability density functions 
may be misleading or strictly nonsense. Clearly, 
negative strength is not defined and there is no 
structural material with infinite strength. Alarmingly, 
the accurate characterization of the left tail is exactly 
what is required for the design of safe and survivable 
structures. 
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What has been done too often in the past is to use of a 
ko rule4* ’ to determine a minimum strength threshold 
(MST), namely 

where p is the known mean and o is the known 
standard deviation of the material strength distribution, 
and k is usually taken to between 3.0 and 4.0. This 
threshold works well for established structural materials 
that follow a Gaussian distribution in the cluster region 
but for which experience indicates that the lower tail is 
void from these limits on. There are several criticisms 
to this practice. First, for strength failure data the 
Weibull distribution is more applicable than the 
Gaussian distribution, although there are other 
distributions that may empirically as well as physically 
be more appr~priate.~. The MST k o  rule has only a 
specific meaning for the contents of the left tail in the 
case of a Gaussian distribution. The k values of 3.0 and 
4.0 imply failure rates in the order of 10” and lo”, 
respectively. Clearly, the same explanation cannot be 
given in the case of the Weibull or Gumbel 
distributions (Table 1). 

Table 1. Error in MST k o  rule based on the Gaussian 
distribution. 

When the Normal distribution is used incorrectly in 
place of the Weibul distribution, the MST for k = 3.0 
would underestimate the failure rate as 1.35 x IO3, 
instead of the correct 6.4 x IO”. Similarly, if the 
Gumbel distribution applied but the Normal distribution 
was incorrectly substituted, then a significant 
overestimate of the failure rate for k = 3.0 would occur: 
1.35 x IO” instead of the much smaller 0.46 x 1 O-*’. 

Second, typical test specimen are very small. Efficient 
design aims at nearly uniform exhaustion of available 
strength. This is seldom achieved even in aircraft 
structures. Still, in an efficiently designed aircraft 
structure there are significantly large regions that are 
projected to attain at least one time in their service-life 
stress levels near the available strength. So that may be 
even for a single aircraft a . l% failure would make 
failure uncomfortably likely; in the case of a large fleet 

failure would be certain. The fact that aircraft designs 
are remarkably successful suggest that the probability 
distribution in use represents the left tail of the 
probability distribution of the actual population rather 
poorly and that there is some not too small strength 
level below which there is no content in the actual 
population. The somewhat careless use of the ko 
approach also renders any rational reliability 
assessment by statistical methods meaningless. Clearly, 
what is needed is a more careful characterization of the 
left tail of whatever probability distribution has been 
intuited from available sample data. 

Thirdly, in a recent paper Armis6 has chastised the 
engineering community on their use of statistical 
methods. Failure probabilities computed for a normally 
distributed population by p - k o  are dramatically 
underestimated. For instance, in the example of using a 
Normal distribution and expecting a failure rate in the 
order of lo”, using k = 4 for this purpose, the failure 
rate is underestimated 6 fold if 99% confidence is 
required and the sample size is 31 when p and o are 
unknown and must be estimated from the test data. This 
follows from applying the Student t-distribution, which 
provides corrections to the Normal distribution for 
sample size and confidence level when test data are also 
used to estimate the material strength mean and 
standard deviation. Even more severely, to achieve a 
failure rate in the order of l o 7  with about 99% 
confidence, k = 6.7 would be required when computing 
with the Normal distribution to obtain the 
corresponding correction provided by the Student t- 
distribution. This fact has been generally ignored. 
Furthermore, it must be pointed out that the Student t- 
is only applicable to test data that is distributed as 
normal. We next present a rational procedure for 
determining a guaranteed minimum strength threshold 
that correctly characterizes the lower tail behavior of 
material strength. 

A RATIONAL GUARANTEED MINIMUM 
STRENGTH THRESHOLD 

The GMST threshold procedure proposed here uses 
samples with different specimen lengths. It correctly 
identifies in some best sense an appropriate tentative 
strength distribution through tensile testing of a 
sufficiently large sample of the smaller-length 
specimens. The lower tail of the strength distribution 
may be truncated to ensure that the statistical strength 
distribution also makes physical sense. The identified 
tentative strength distribution is used to project a 
strength distribution for the longer-length tendons. The 
contradiction between these projections and the 
findings from the long-length specimens tests are used 
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to deduce a correction to the hypothesized tentative 
strength distribution. Relatively small samples of 
various longer-length specimens are used to correct the 
projected strength distribution as necessary. 

The universe of discourse is a uniform cable of infinite 
extent. Uniformity as meant here is nominal rather than 
strict. Usual variations due to fabrication processes that 
cause strength to vary along the length of the cable are 
accepted within that meaning. The goal is to determine 
a guaranteed minimum ultimate tensile strength for that 
cable. Typically a sample of constant length cable 
segments is tested. Let that length be 1. The need of 
such practical aspects as loss of cable lengths to the 
gripping of the specimen is ignored in this discussion. 
Specimen length Z as discussed here refers to the length 
of the test section alone. Assume that for a suitable 
sample size some probability density function fdt), 
where t is the breaking or ultimate tensile strength of a 
particular specimen, has been determined to fit the data 
well. The probability that a specimen from the general 
population (each specimen of length I> will fail at or 
below the tensile load T is 

Even if the hypothesized probability density function 
fits the data in the cluster region well, it is in general 
doubtful that its tails fit the statistical characteristics of 
the population. Clearly, few structural materials have 
regions in which the strength exceeds the average 
(mean) strength by say a factor of two. Yet for both the 
Gaussian distribution and the Weibull distribution the 
upper tail end is not void. Here we are concerned with 
the lower tail end. 

Consider taking a second sample with specimens of 
length NI, where N is a sufficiently large integer. We 
can easily assert that p~ I p and ON I 0, because the 
probability of critical flaw inclusion increases with 
length. Here p is the expected value or mean, and o is 
the standard deviation or the square root of the second 
moment about the mean. 

- Designating the probability of failure at or below a 
tensile load t of a specimen of length I by Fdt) one 
obtains the probability of failure at or below a tensile 
load T of a specimen of length NZ as 

F,(T) = Pr(each I -length strength I I) 

(3) 
= 1 - Pr(each I - length strength > I) 
= l - [ I - F , ( I ) ] N  

where the (r) are the binomial coefficients. 

Subsequently, the probability density function for 
failure of the specimens of length NZ is given by 

(4) 

The probability density function for failure of the 
specimens of length NI is the probability density 
function of the smallest order statisticg* lo (minimum 
value in a sample). In other words, the probability of 
failure at or below a tensile load t of a specimen of 
length NZ is equivalent to the probability of failure at or 
below a tensile load t of the weakest specimen of 
length I: 

F,(z) = Pr(min{X,,X, ,..., X,} I I) (5) 
= Pr(X,,, I I), 

where X,, X, . . .XN are material strengths of each of the 
I-length segments that form the NZ-length tendon and 
X ( , )  is the strength of the weakest segment or the 
smallest order statistic. The limiting distribution 
function meaning as N -+ 00, of the smallest order 
statistic, also known as extreme value distributions, 
falls into three families: 

Type 2: 

Type 3: 

where 6, 8 (>O), and k (>O) are parameters. The type 1 
distribution is also referred to as the Frichet-type 
distribution; the type 3 distribution is a Weibull-type 
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distribution; and the type 1 distribution a Gumbel-type 
distribution.'13 The Weibull and Gumbel 
distributions are the most commonly used extreme 
value distributions. 

The tentative distribution allows the construction of a 
probability distribution for a population of larger test 
specimens, referred to as the projected distribution 
above. Typically, the larger-length specimen 
distribution has a lower mean and a smaller dispersion. 

Development of tentative distributions for longer-length 
specimens from the distribution of smaller-length 
specimens is illustrated in Figure 2. The first plot 
assumes a tentative Gaussian distribution of Z = 1' 
length specimen strength. Strength distributions for NZ 
= lo', 30', and 40' specimens are projected using (4) 
with A(T) Gaussian. As the specimen-length gets 
larger, i.e. N -+ co, the projected distributions reach a 
limiting distribution. For N = 30' and 40', projected 
strength distributions &(T) and f4o(r) practically 
overlap. Same observations hold whenh(T) is Weibull, 
Gumble, and others. Figure 1 also verifies that as the 
specimen length gets larger, its average strength as well 
as its standard deviation decreases. 

Ln some cases, the tentative distribution fitted to the 
small-length test specimens may not make physical 
sense, such as an unbounded right tail indicating an 
infinite material strength. Although, statisticians would 
argue that an infinite right and/or left tail, as in the 
Gaussian distribution, is of no concern since even k3c~ 
would cover 99.72% of the population. However, as 
discussed by h i s 6  in probabilistic failure rate 
calculations of IO-' or smaller, accuracy can be highly 
in error. 

Additionally, an off-the-shelf probability distribution 
that might have been chosen and suitably matched to 
the data in the cluster region will not be able to 
characterize the statistical content of the outlying 
extremes in the population of strength test specimen of 
a real material. Given a hypothesized probability 
distribution that fits the data in the cluster region well 
one would expect thatfN&) and FNXp), where p is the 
mean tensile strength of the I- length specimen sample, 
will be confirmed approximately by a sufficiently large 
NZ sample. However, at the lower tail end where 
probability of failure p is small, s a y 3  (2')  = .01, we 
expect contradictions. For this discussion let N = 10. 
Then for the strength value T' the probability of failure 
of an NZ specimen is dominated by the first term of the 
sum and estimated to be slightly larger than 
(.904)(10)(0.01) = .094, i.e. one would expect from the 
formula that about every ll* specimen to fail at or 

below T' = inverse G(T) I p = .01}. If our contention is 
correct, however, then failure at or below 5' would be 
considerably less frequent. Furthermore, one might 
suspect that there is some useful information in the 
discrepancy between the projected distribution for the 
NZ sample cfNl and FNI) and a tentative probability 
distribution that could be constructed from the NZ 
sample data. 

I 

tensile W . r  

tensiln 1 d . r  

tensile load.r 

Figure 1. Projected breaking strength distributions for 
various lengths and statistical distributions. 
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Tentatively Postulated Probability Distribution 
Modification 
When modifylng some assumed probability distribution 
to better represent certain probabilistic characteristics of 
a population, it is still necessary to make sure that the 
modified representation is a probability distribution. 
For the probability density function Ax) it means that f 
is strictly non-negative and that 

ia 

Jf(5)d 5 = I  .o . (9) 

In the case that a’chosen probability density function 
fits the data in the cluster region very well but outside 
some regime it is known that the actual distribution is 
void while the chosen function is non-void one could 
use simple scaling to affect a suitable correction to the 
originally chosen probability density function. Say 
reality dictates Ax < a) = 0 and Ax > b) = 0, then one 
can construct 

b 

where a = J f ( ( ) d c  . The modified probability 

density function f(x) fits the population characteristics 
within the cluster region well, and matches the 
requirement that outside the range [a, b] the probability 
density is void. 

a 

Proiected Distribution Corrected Through Test Data 
In order to obtain an estimate for a guaranteed 
minimum strength threshold, it is necessary to probe the 
lower tail of the probability distribution. The premise is 
that the projected distribution will deviate significantly 
from a distribution that would be constructed for the 
sample test data of the large-scale specimen. Accepting 
then the shape of the tentative distribution in both the 
cluster region and the right tail as adequate for the small 
specimen population one can rapidly produce 
modifications to the projected distribution for the large 
specimens population given today’s computer 
technology. This can be done by recalculating the 
projected distribution from modifications to the 
tentative distribution for the small-scale specimen 
population. The modifications would be made to the 
lower tail end of the tentative distribution by assuming 
some portion of its lower section void, and in addition, 
by corresponding re-scaling in the non-void range of 
the probability density function. The modification that 
produces the best data-fit between the projected 
distribution and the data of the large-scale specimen 

population is then accepted as an improvement to the 
probability distribution for the small-scale specimen 
population. 

Illustrative Example 

A vital piece in the design of the lightweight super- 
pressure ULDB is accurate characterization of the 
strength of the tendon material. The tendons are made 
of a new polymeric engineering material for which little 
industrial experience exists, requiring extensive tensile 
strength testing of the cords. Specimen length for initial 
strength characterization has been around 6 feet. 

In Figure 2 Weibull distributions provided the best fit to 
data fiom in-production testing of the tendon material 
(6.2‘ specimens) by the manufacturer in early 2003. 
The Sample 1 specimens are from the first quality 
control test of spools 1-75 during the fabrication of the 
balloon. Similarly, Sample 2 specimens are from the 
first quality control test of spools 76-143. Sample 3 
and 4 are from the second quality control tests for 
spools 1-75 and 76-143 respectively. The Weibull 
parameters are 

Sample 1: 6 = 1590, a =  11.5, p =  1460, 

Sample 2: 6 = 2060, a = 7.34, j3 = 11 10, 

Sample 3: 6 = 

Sample 4: 6 = 1550, a = 10.2, j3 = 1570. 

53, a = 21.1, p = 2780, and 

lrrpoduction Testing dSpacimens x lo= 

- 5 a m P k 3  
2.5 - 

I 

Fi 
gure 2. In-production strength testing of specimens of 
about 6’ long. The shaded area for each sample depicts 
minimum threshold value for approximate 0.01 failure 
probability. 

tensae 1oad.r 

6 
American Institute of Aeronautics and Astronautics 



Figure 3 shows similar fitted distributions to Sample A 
(6.2’) and Sample B (26.2’) for testing data obtained in 
August 2003. Both follow a three-parameter Weibull 
distribution with parameters 

Sample A: 6 = 2680, a = 3.5, p = 293 and 

Sample B: 6 = 1710, a = 12.6, p = 1280. 

4.5- 

4 -  

3 5 -  

3 .  

2 2.5- 

2- 
z 

1.5- 

1 -  

0 5 -  

Therefore, parent distribution of the material strength, 
regardless of tendon length, can be assumed to be 
distributed as a three-parameter Weibull with 
probability distribution function 

- SmplsA & ,,(4) 
- - S m P  (fZ8 ,,R)) 

and with probability distribution function 

controls, we are certain that the samples came kom the 
same population. Therefore we conclude that larger 
sample sizes are needed to properly carry forth the 
quantitative assessment of minimum strength guarantee. 
However, once further experiment results are in hand, 
the procedure will be as follows below. 

Let XI, Xz, ..., XN denote the material strengths of 
each of the I-length segments that form the NZ-length 
tendon. From (5), 

F, = 1 - Pr(X,,, > 7 )  

= 1 - [Pr(X > x)IN 

= 1 - exp[ - 

Therefore, given that the strength distribution of the Z- 
length specimen is a Weibull distribution with 
parameters (6, a, p), the parameters of the NZ-length 
specimen are given by (6, Nu, p). But as we expected 
the data will not cooperate easily as we do not see such 
a relation between the parameters of Sample A and 
Sample B. (Sample A: Weibull (6 = 2680, a = 3.5, p = 
293), Sample B: Weibull (6 = 1710, a = 12.6, = 

1280)). 

Which means that the distribution of the NZ-length 
specimens for this particular material is not simply in 
the form of min{X1, Xz, ..., XN} as derived in (5). 
Hence, the projected distribution of NZ-length ‘ 
specimens is corrected using the available test data. 
The NZ-length sbength is distributed as 

Y N ,  = uNmin{Xl, ~ 2 ,  ..., xN) - bN, (14) 

with probability distribution function 

where 6 is the location parameter, a and /3 are shape and 
scale parameters, respectively. f,(7)=Fx ( y y N )  - 
We observe (Figure 3) that the outcome of the (15) 

y + b N - a N 6  experiments contradicts what would rationally be = - “p[ - ( aNp ,*I* expected. We expect the mean for Sample B to be less 
than the mean for Sample A, and we expect the 
variance (dispersion) of Sample B to be significantly 
less than for Sample A, as longer specimens will have where a, b, and k are positive. Therefore, given that the 
more critical flaws (see Figure 1). This leads to the strength distribution of the I-length specimen is Weibull 
conclusion that either the sample sizes are too small or with parameters (6, a, p), NZ-length specimen are also 
that the samples have come fiom two different distributed as Weibull with parameters (bNL-aN6, Nu, 
populations. In our case, due to diligent experimental aNp). Such u and b exists for the available data. 
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Therefore, we can predict the distribution of the 26‘ 
specimens from the distribution of the 6’ specimens. 
Hence we can also predict the distribution of the 500‘ 
specimens. 

Once, the correct’ distribution of the NI-length 
specimen, YN~, is identified, the guaranteed minimum 
strength threshold T, is the threshold value that contains 
at most proportion p of the NI-length strength 
population with 1 OO(l-a)% confidence. Then, 

with 100(1-a)% confidence, where p is the desired 
maximum proportion in the lower tail of the strength 
distribution (Figure 4). Exact and closed form solutions 
exist for various extreme value distrib~tions’~’ 14’ l5 
including the three-parameter Weibull distribution.16’ l7 

CONCLUSION 

This paper presented a rational approach for 
determining a guaranteed minimum threshold with a 
desired degree of confidence, for structural materials 
with none or minimal industrial experience. The 
procedure identifies an appropriate tentative strength 
distribution through tensile testing of sufficiently large 
sample of smaller-length specimens. The lower-tail of 
the strength distribution is truncated to ensure that the 
statistical strength distribution also makes physical 
sense. The tentative strength distribution is used to 
project a strength distribution for the longer-length 
tendons. Relatively, smalI samples of various Ionger- 
length specimens are used to correct the projected 
strength distribution as necessary. High-quality data is 
a crucial component in determining a guaranteed 
minimum strength threshold. 
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